
N89-10104 /

o,,

TELEOPERATED POSITION CONTROL OF A PUMA ROBOT

Edmund Austin and Chung P. Fong, Ph.D.

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California

)

i

Abstract

A laboratory distributed computer control teleoperator system is

developed to support NASA's future space telerobotic operation. This

teleoperator system uses a universal force-reflecting hand controller in

the local site as the operator's input device. In the remote site, a PUMA

controller receives the Cartesian position commands and implements

PID control laws to position the PUMA robot. The local site uses two

microprocessors while the remote site uses three. The processors com-

municate with each other through shared memory. The PUMA robot

controller was interfaced through custom made electronics to bypass

VAL.

In this paper, the development status of this teleoperator system

is reported. The execution time of each processor is analyzed, and the

overall system throughput rate is reported. Methods to improve the

efficiency and performance are discussed.

1.0 INTRODUCTION

It is hoped that in the future mankind will inhabit space on a permanent basis.

Whether it be military crews operating space based offensive/defensive facilities or civilians

living in space colonies, the habitation of space will require large amounts of construction

and repair in space. For such tasks, it is preferable not to use astronauts since radiation

hazards would limit the amount of time one person could be allotted EVAs (Extra Vehicular

Activity). Also, there are some tasks where safety considerations would preclude using a

man at all. In these situations it would be preferable to use some type of robotic device
to achieve one's objectives.

Basicallythere are two types of robotic devices to use: autonomous and teleoperated.

Autonomous systems require no human assistance to accomplish their task. After being

informed of the task to perform, the autonomous system executes the task either from

some preset repertoireof tasks or uses some type of artificialintelligenceto determine how

to tackle the problem. This requires that you have one or more of the following: I) a

very large set of pre-defined tasks to cover any and alleventualities,2) a very good model

of the environment, 3) a very powerful artificialintelligencecomputing capability,or 4) a

good method of incorporating sensor data. This is a partial listof autonomous system
requirements and stillthey may be difficultto meet.

An alternative is a teleoperated system. A teleoperated system is basically a robotic

device that is remotely controlled by a human operator. So we will depend upon a human

mind to determine how to tackle a task. Still, for a human operator to properly direct a

robot he will need sensors not only to provide him with a view of what the robot is doing,

but also a feel for the forces the robot is both exerting and experiencing.

In order to study some of these teleoperation issues we have constructed a teleop-

eration system consisting of a force reflecting hand controller, a Unimation 560 robot,

and five National Semiconductor microprocessors. The microprocessors are needed to per-

form kinematic transformation and data communication since the FRHC (Force Reflecting

Hand Controller) and robot are kinematically dissimilar and physically separated. With

this system we will attempt to determine what defines "good" teleoperation and how to
improve it.

2.0 SYSTEM ARCHITECTURE

The computing hardware of our system consists of five National Semiconductor 32016

CPU development boards with N.S. 16081 floating point unit and an 10 megahertz clock

(except the FRHC control CPU which has a 6 megahertz clock), two BLC-519 I/O boards,
two 128 kilobyte RAM boards, and some ancillary electronics to interface with the FRHC

(Force Reflecting Hand Controller) and the Unimation PUMA 560 robot.

All of the computing hardware is contained in two Multibus Chassis. See Figure 1.

More specifically, the various components perform the following tasks:

'-1"1

Go

_°

¢.-.

LOCAL NODE

m

0"

.-d Communication
CPU

FRHC Control
CPU

BLC-519
I./O Board

Off-Board
RAM

FRHC
FRHC

Electronics

REMOTE NODE

Communication

PUMA Robot

Control CPU

PUMA Interface
CPU

BLC-519
I/O Board

Off-Board
RAM

PUMA Interface

Electronics

PUMA

Electronics

PUMA
Robot

i,..- o

O"

b-"

1) Two communications CPUs, one located in each chassis(node), that decide what data

to send, retrievethat data from offboard RAM, assemble that data into a bufferand

send itover a parallellink. Conversely, when a communication CPU isreceiving,it

determines what data itisreceiving,and placesthat data in the appropriate locations

in off board RAM. The local communication CPU also contains the menu through
which system parameters can be altered.

2)One FRHC control CPU that interprets the encoder values of the FRHC and converts

them into joint angles, from these joint angles the Cartesian position and orientation

of the end of the FRHC is determined (i.e. the FRHC T6 matrix), for position control.

For rate control, the deviation of the FRHC from some neutral position is used to

generate rate commands. This CPU also calculates the force feedback to backdrive

the FRHC, whether we are in the rate or position mode.

3) Two BLC-519 I/O boards that have the 8 bit parallel I/O ports that the commu-

nications CPUs actually use to send and receive data between the remote and local
nodes.

4) Two BLC-0128A 128 kilobyte off board RAM boards, that are used to hold all infor-

mation that is shared between processors within a node and to hold all information

shared between nodes. Each specific piece of stored information is held at a specific
address known to all the CPUs.

5) The PUMA robot control CPU does the inverse kinematics and the forward kine-

matics of the robot, along with compensation for an end effector, and workspace
transformations.

6) Actual interfacing with the robot is accomplished by the PUMA interface CPU. It

sends joint angle commands to the robot, reads the current robot joint angles, cali-
brates the robot, and performs the setpoint interpolation.

7) The PUMA electronics provides the servo power to the robot and has six Motorola

6503 joint microprocessors that actually perform the low level robot servo control.

8) FRHC electronics allows us to read the potentiometers of the FRHC's six joints and

to supply current to the motors attached to the six joints for force feedback.

9) The PUMA interface electronics facilitates direct communication with the six 6503

joint microprocessors.

PUMA Interface Electronics

Our interface design approach is to by-pass Unimation's LSI-11 resident VAL-II and

to simulate Unimation's interface to the DRVll in the PUMA arm controller by using two

Intel 8255 Programmable Peripheral Interface(PPI) adapters. Port A, B, and C on the

PPI are used for data input, output and handshake, respectively. Mode 1 is selected as the

port mode. To read or write the data/commands from/to the joint processors, a request

4

signal hasent through handshake line. The data sampling rate and the position

commandng rate is hence dependent on the high level processor cycle rate.

The 1 servo commands issued from high level processor are decomposed into

digital semands acceptable by PUMA joint processors. The low level servo com-

mands ardy the following four routines coded in "C':

a) readjint, command, data) - reads encoder/current value, depending on the

commm the specified joint.

b) read__mmand, data) - reads an array of encoder/current values from all six

joints

c) write._int, command, data) - write set points/motor currents, depending on

the co, to the specified joint.

d) write.:ommand, data) - write an array of set points/motor currents, to all six

joints neously.

Embe, the same interface software routine, those four routines interpret the

commands.form proper handshakes to read/write the data/digital servo commands

to/from the. interface.

3.0 SYSTE_TROL MODES

Control M_ration

The e_operation system is constituted of three control loops: the supervisory

control loo_cal control loop and the remote control loop. The supervisory control

loop includ)perator, the visual and audio feedback, and menu-driven commands.

Through mection, the operator can switch the control mode, change the control

parameters_nitor the control status. The local control loop consists of the force

reflecting h_troller and the local processors. The remote control loop is formed by

the sensorsanipulator and the remote processors. High level information, such as

the Cartesitions/velocities and the control mode words, are exchanged between the

local and tke control loops.

In the :control loop, the low level servo commands generated by the remote

processors _.d to the PUMA's joint processors through the interface board in the

PUMA contmit. Since the PUMA joint processors control the joint motors either

in "position or in "current mode," the servo commands generated by the processor

are also basqhe above two modes. In "position mode" the joint processor accepts

encoder set and implements PID control. In "current mode" the motor torque

commands acted by the joint processors. Currently, the PUMA interface processor

takes advant the joint processor PID control capability and sends only encoder set

points to therocessors. The direct joint motor control that sends current commands

to joint processors is not currently implemented because 1) the interrupt-driven interface,

which facilitates the high bandwidth PD or PID servo control, is not installed; 2) the
PUMA velocity needed for PD or PID control is also not available.

All of the following three major system control modes result in the position commands
which servo the PUMA arm in its _position mode":

1) Position control mode. By reading the pots from the hand controller interface, the

joint angles are computed. Forward kinematics of the hand controller is then per-

formed to determine the end-point position and orientation in Cartesian coordinates,

which is commonly referred to as the T6 matrix. Upon receiving the end-point posi-

tions of the hand controller through the parallel line, the remote processor performs

the inverse kinematics of the PUMA to determine the desired joint positions. The

desired joint set points in encoder values are then calculated and sent to the PUMA

joint processor interface. The current PUMA joint position is also read by the remote

processor. From this, robot forward kinematics are done to calculate the position and

orientation of the robot's endpoint. This information is transmitted back to the local

node. The position error between the hand controller position and PUMA position
are then computed and used to back drive the hand controller.

2) Rate control mode. In rate control mode, the hand controller is utilized as a joystick-

type input device, in which the spring effect is generated by the software. The joy-

stick's displacement from its nominal position determines the rate. By integrating
the rate, the local processor yields the aggregated positions which are then sent to

the remote site. A small deadband was set around the nominal position of the hand

controller to ensure no position output when the hand controller rests in the neigh-

borhood of its nominal position. Since the feedback position is not processed in this

mode, the throughput is slightly faster than in the position mode.

3) Mixed mode. In this mode, the translational axes operate in rate control mode while

the rotational axes operate in position control mode. This mode would allow the

operator to quickly move PUMA arm in the work space while maintaining the same
orientation of the hand controller.

The above three control modes are actually commanding the PUMA arm's movement,

and are therefore categorized as operation modes. The following are three other non-

operation modes, in which the PUMA arm is "quiescent":

1) Start mode. This is the first mode entered upon turning on the power. In this mode,

the initialization, health and status checking take place.

2) Index/menu mode. Since the work volume of the hand controller is much smaller than

that of the PUMA arm, one of the means to augment the hand controller positioning

capability is to use indexing. This mode allows the hand controller to move to a new

position while the PUMA arm is frozen. The teleoperation resumes after a key on the

keyboard or a button on the hand controller is hit. Another means of augmenting the
J

6

hand controller positioning capability is by using scaling factors. The movement of

the PUMA arm can be amplified to a larger motion or confined to a smaller motion by

the proper selection of scaling factors in the menu. The first one is for gross movement

and the second one is for dexterous positioning. The scaling factors can be applied to

both position control mode and rate control mode.

3) Quit mode. This mode is entered through menu selection. In this mode, procedures

including robot servo power shut off, return of confirmation messages, etc., must be

exercised prior to system shut- down.

Control Mode Transition

Since the robot is frozen during index mode, it is used as a natural gateway for

mode transition. After startup, the system will default into the index/menu mode. From

index/menu mode, the operator can transit into any of the following modes:

a) Quit mode - By menu selection.

b) Position mode - By depressing the index button on the handgrip of the hand controller.

c) Rate mode - By depressing the index button after selecting the rate mode from the

menu.

d) Mixed mode - By depressing the index button after selecting the mixed mode from

the menu. The mode transition diagram is shown in Fig. 2.

When exiting the index mode, the current PUMA position is stored and the trans-

lational bias between the new hand position and PUMA position is calculated. Provided

that the indexing is also applicable to the rotation, as the operator desires, the rotational

bias has to be calculated. The translational vector of the subsequent position commands

are then added to the stored PUMA position to yield new PUMA position commands.

By using Denavit-Hartenberg notations, the translational bias is computed as follows:

= (_6T)(_,_T)(hh_T) -1 (i)

where the (_°T) denotes the transformation from a0 (base of robot arm) to h0 (base

(a6T) is the current PUMA position (i.e., T6 matrix) w.r.t.of hand controller). Similarly, a0
its own base reference, ho(h6T) is the hand controller's new position w.r.t, its own base

reference, and (_T) is the coordinate transformation between PUMA arm's last joint and

the hand controller's hand grip. The R matrix in (_°T) results in Eq. (1) being replaced

by a 3x3 matrix, which is pre-determined to correct the coordinate disparity between hand

controller base and robot base. The P vector in (_,°T) represents the translational bias.

)

MODE

START

QUIT

INDEX/MENU MIXED

MODE

RATE
MODE

Non-operation Mode

C]) Operation Mode

Figure 2. Mode Transition Diagram

The rotational bias is calculated as

a6 aO --l[aO _'_ (2)

where ao(aenT) is determined by

aO(=6.T) = (_Or)(hOT) h6(a6 T) (3)

and the ao(hOT) matrix isderived form Eq. (I).Ifthe index on rotation isnot desired,the

R__matrix in a6(a6,_T) can be replaced by an identity matrix/_..

The subsequent position commands (T6) after indexing is then computed as follows:

a0
(ae.T) = (_OT) (hOT) (_6T)h6 (=6.T)_6 (4)

4.0 ROBOT KINEMATICS

In order to determine the position and orientation of the last link of the robot in

Cartesian space, reference frames were assigned to each link of the robot, using Denavit-

Hartenberg notation. See Figure 3. Six transformation matrices _-IT were then deter-

mined that relate the reference frame of link i to link i - 1, which are a function of the

joint angle of that link. Multiplying these six matrices, i.e.,

OT_T 2 3 4 s oT3T 4T sT 6T = (s)

yields a °T matrix, a 4x4 matrix that contains both the orientation and position of the

reference frame of the last link with respect to some arbitrary reference frame.

OT= [R21 R22 R23 Py R

0
(6)

where R is the orientation matrix and P is the position vector. This generation of a °T

given the joint angles of the robot is referred to as the forward kinematics calculation.

There is one problem with this formulation thus far and that is that the reference

frame of the last link is actually embedded within the robot wrist while what is desired is

the position and orientation of the tip of an end effector. See Figure 4. Therefore we must

9

WAIST
o

z o

a 2

2?0°
SHOULDER

. (JOZNT 2)

motor

EL]

motor casing should be here

casing should not be here

X0,X 1

270 ¢

x 3

x_,x 5,x6

5,z6

340 °

\
WRIST

(JOLT6)

Figure 3. PUMA Robot Reference Frames

10

End

_ Third link of PUMA

effector

Y7

z7

robot

Figure 4. Robot T6 Frame Versus T7 Frame

i

11

multiply the sOTmatrix by a transformation that describesthe position and orientation of

the tip of the end effector with respect to the e°T reference frame.

r0T=0T,E where E is also a 4x4 matrix. (7)

Now that we have described how to obtain the position and orientation of the robots

end effector given the robots joint angles, the more difficult task is to determine the robot

joint angles that will yield a specified position and orientation of the end effector tip. This

is referred to as the inverse kinematics calculation. By successively premultiplying both
sides of equation by the inverse of the leading term on the left hand side we obtain the
following

1,v2,r,S,r,4,r,5,r, OT-I(SOT)2.t3.L4.t 5.z6.L "--

3., 4., 5.L 6. L --

4:5-"e:S'r'4"r'S'r"= _T-,(_T-1)(OT-1)(OT)

4 5
5TsT = 34T-l(_T-1)(_T-1)(OT-I)(OT)

 T-l S -1 -1 1 -1= (4 T)(sT)(2T)(°T-1)(°T)

(8)

(9)

(10)

(11)

(12)

If we equate terms in equations (8) through (12) the angular values of the six PUMA

joints can be found in terms of the Cartesian position and orientation [2]. Again, there

is the problem that final solution obtained will be in terms of the components of the

sOT matrix, whereas what is actually specified is the °T matrix (i.e., the position and

orientation of the tip of the end effector). From equation (7) we can obtain the intermediate

sOT matrix from the actual °T matrix by postmultiplying by the inverse of the end effector
transformation so that

°T = roT* E -1 (13)

v

5.0 COMMUNICATIONS

While there are two distinct computing nodes, only one node, the local node, allows

the user to interface with the system. It is through the local node that the user enters

all appropriate data and receives any information from the system. Associated with the

local communications processor is a menu. When the two nodes are communicating via

the remote and local communication CPUs the user hits the "escape" key on the terminal

attached to the local communication processor. This stops communication and enters the

user into the index/menu mode. By now typing "m" on the keyboard, the user brings

up the menu which has a hierarchical tree structure. Once inside the menu, the operator

can call up sub-menus that change such system parameters as operational mode, motion

scaling factor, robot end effector length, etc. All data to be shared by processors within
a node as well as data to be used by processors within another node are stored in off

12

J

board RAM. When the user enters changes from the menu the appropriate data is also

changed in off board RAM. Upon exiting the menu the user can re-start the inter node

communication by simply hitting the "return" key on the terminal.

Since the local and remote node are located in two different chassis, a way was needed

to allow the two nodes to communicate with one another. Another problem was that

depending on the operational mode different data would be passed between the nodes. For

example in position mode you would want the local node to send a position and orientation

matrix, while in joint mode (not implemented yet) you would only want to send six joint

angles.

Communication is achieved with two sets of boards, one set resides in each chassis. A

communication board set consists of one 32016 CPU board and one BLC-519 I/O board.

The BLC-519 has 9 eight bit parallel communication channels and uses the Intel 8255

chip for I/O. Each I/O board has three ports where each port contains three parallel

communication channels. Currently, the I/O boards operate in mode 1, which simply

means channel A of the port is used for local to remote node communication, channel B

of the port is used for remote to local node communication, and the eight lines of channel

C are used for hand-shaking.

Within the framework of the C programming language we set a pointer equal to the

address of the appropriate channel of the appropriate port of the I/O board. Then by

setting the value of whatever the pointer points to we can send a byte of data over the

parallel communication link. Likewise, by reading the value of what the pointer points to,

we can read what has been sent over the parallel link. Communication is synchronized by

the use of a read acknowledge line and a write acknowledge line. If a sender is to send more

than one byte of information, it waits for a read acknowledge signal from the receiving

side before sending each subsequent byte. The read acknowledge is set by the receiver

when its CPU board reads what has been sent to its I/O board. Similarly, the receiver

CPU will not read what its I/O board has until it receives a write acknowledge. A write

acknowledge is set whenever the sender places a byte of information on its parallel port.

Data sent from the local node to the remote node will always consist of a mode word,

local status word, and a remote command word, each being two bytes in length. The

bits of the mode word indicate what operational mode the system is currently in, whether

indexing is on or not, and whether any parameters have been changed. Similarly the bits

of the local status word show the local status, while the bits of the remote command word

indicate the functions the remote side is to perform. See Figure 5 for a definition of the

bits. Other data to be sent will consist of one or more of the following items FRHC T6

matrix, FRHC Cartesian velocity, FRHC joint angles, robot end effector length or FRHC
frame vs. robot frame difference. The last two items will be sent only once after the

value of either has been changed by the operator. By deciphering the mode word the

local communications CPU determines which data to retrieve from shared RAM and send

over the parallel communications link. For example if the mode is joint mode and the

parameter change bit is set the local communications CPU will retrieve the mode word,

local status word, remote command word, FRHC joint angles, robot end effector length,

13

Bit

0

i
2

3
4
5

6to 14
15

Bit

0

I

2

5

4

5

6

7

Mode Control Word

ControlMode

Position control
Rate control

Current control(future use)

Jointcontrol(future use)

Index mode - On

Rotationinde×ing - On
Unused

Parameter change
indicator

- Robot Status Word

Mea ning

Calibrationstatus

Servo power on/offstatus

Jointlimitviolationin in-

verse kinematics solution

Gripper open or closedstatus

Robot processor (MAC3) error
Robot UC error

Comm processorerror

Sensor processorerror

- FRHC

Command Word

.BitI Command
0 Calibrationcm'd

I Servo power onloffcm'd

Bit

0
1
2
3

I c - Robot

Command Word

Command

Calibrationcm'd

Servo power on/offcm'd
Unused

Oripper open/closecm'd

Bit

0

I

2

3

4

5

&

7

- FRHCStatus Word

Mea ning

Calibration status

$ervo power on/off status
Unused for no,v
Unused for now'
HAC5 error
MI$ error

Comm processor error
Graphics processor error

v

Figure 5. Mode Status Command Word Bit Definition

.14

J

and the FRHC vs. robot frame difference. These data items are assembled into a data

buffer and sent byte by byte to the remote communications CPU. The first byte sent is a

number telling how many bytes of information are contained in the data buffer. Held in

the first two bytes of the data buffer is the mode word. Upon deciphering the mode word

the receiving node then knows what data is held in the buffer. This data is then deposited

in the appropriate places in shared RAM.

The format of the data held in the buffer is the actual binary pattern residing at the

memory address that corresponds to the variable you have selected. For unsigned integer

variables such as the mode and status word, it is the expected binary representation.

However, for non-integer numbers such as the robot end effector or the T6 matrices, the

memory location corresponding to a variable represents the non-integer variable as a 64

bit double precision number in the National Semiconductor Series 32000 floating point

format. The 64 bit field contains such information as the sign of a number, the value of

its exponent and the value of its mantissa. While non-integer information is originally

held in a 64 bit field (double precision number) it is first converted to a 32 bit field (single

precision number) before placing it in the data buffer. Again, the 32 bit field of the single

precision number still contains such information as sign, mantissa, and exponent. The

double precision to single precision conversion speeds overall parallel communication at

the price of a slight reduction in the accuracy of the numbers transmitted.

In sending the literal contents of a variable's address in memory in floating point

format we greatly increase the overall communication throughput, as compared to the

option of sending numbers over in ASCII format.

Embedded within the communication software is also a provision for checking the

health of each processor. Associated with each processor is a 32 bit long error word. Each

bit in the error word corresponds to a specific problem in a specific processor. When a

processor detects some problem within itself it then sets the appropriate bit with its error

word. Of course these errors must be of a non-catastrophic nature, because if it were to

cause a processor to "die" then that processor would be unable to set a bit in its error

word. If the remote communications processor finds any of the remote node error words

non-zero (i.e., some type of error) it sets the appropriate bit in the remote status word

and ships any non-zero error words to the local node. By looking at the bits of the error

word the operator can then tell what error has occurred in what processor and take any

appropriate action.

6.0 SETPOINT INTERPOLATION

When both the local and remote nodes first became operational it was found that

the robot motion, when following position commands generated by the FRHC, was un-

satisfactorily jumpy. Upon comparing the cycle rates of the local and remote nodes it

was found that the FRHC control CPU was running faster than the PUMA robot control

CPU. Since the two processors were running asynchronously this meant that occasionally

the robot control processor would miss a position command from the FRHC control CPU.

15

In an attemptooth out the position commands the robot tries to servo to, a spline

fit was made t even if occasionally a point was missed the motion would be smooth

and continuouead of smoothing out the FRHC Cartesian commands it was decided

to smooth outesults of the robot's inverse kinematics (i.e., a joint space position

composed the s six joint values) from an FRHC Cartesian command.

It was deem use a cubic parametric that is both smooth and continuous with

the second der_ of the curve at the spline knots (the original points we wish splined

together) bein_rarily set to zero. Referring to Figure 6 where pl, p2, and p3 are the

three joint spa6ition vectors we want splined together and T_j_l,T..22, and _ are the

corresponding ttt vectors, then a: space curve through p2 and p3 is expressed by the
equation --

p_(u) = A + Bu + Cu 2 + Du 3 (14)

where currently u _< 1. From the boundary conditions we get the following relation-
ships:

p(0) =p2 (is)

p_(1) ----p__3 (16)

dp

du
u----0

= T___22 (17)

d P I T._._3 (18)du u=l

E'(0) =E'(1)=o (19)

Using these rettionships, we can easily determine that from equation (14)

= pA (20)

B = T..22 (21)

C = 3, (p3- p2) - 2, T2 - T3 (22)

D = 2 * (p2 - p3) + T___22+ T_._33 (23)

Further we can determine that

T2[i] = (-6 * (p2[iJ- pl[i] + 12 * (p3[i]- pl[i]) -6 * (p3[i]- p2[i]))
12

T3fi] = (3* (p2[i] -pl[i] - 6 * (p3['] - pl[i])+ 21 * (p3[i] - p2[i]))
12

16

(24)

. (25)

where i - 0, 1,2,3,4,5 are the six components of a robot joint space position, pl is the

third most recent result of the robot inverse kinematics, p2 is the second most recent

result of the robot inverse kinematics and p3 is the most recent result of the robot inverse

kinematics.

Now, using equation (14) we generate seven spline fits that are equally spaced between

u = 0.5 and u -- 1.5. So, the spline fit starts midway between p3 and p2. It then follows a

smooth curve through p3 and ends at a predicted joint space point halfway past p3.

Figure 6. Two dimensional representation of six dimensional space curve

7.0 SYSTEM THROUGHPUT

There are primarily eight tasks that the PUMA robot control CPU performs in a

serial fashion.

1) Retrieval of FRHC T6 from shared RAM: This process takes 0.000143 seconds which

is equivalent to a rate of 6976.7 Hertz.

2) Workspace adjustment for use in forward kinematics: This process takes 0.001533

seconds which is equivalent to a rate of 6522 Hertz.

3) Forward kinematics: This process takes 0.006 seconds which is equivalent to a rate of
166.6 Hertz.

4)

5)

End effector compensation for forward kinematics: This process takes 0.00020 seconds

which is equivalent to 5000 Hertz.

Placement of PUMA T6 in shared RAM: This process takes 0.0001366 seconds which

is equivalent to a rate of 7317 Hertz.

17

6) Wor.djustment for use in inverse kinematics: This process takes 0.00102 sec-

ond_ equivalent to a rate of 980 Hertz.

7) End compensation for inverse kinematics: This process takes 0.0001925 sec-

ondm equivalent to a rate of 5194 Hertz.

8) Inver_atics: This process takes 0.01071 seconds which is equivalent to a rate
of 9_,.

Sum these times and including a few other smaller processes that are also part

of the rolrol CPU computational workload yields a cycle time of 0.02267 seconds
which is at to a rate of 44 Hertz.

Comion time to send a FRHC T6 matrix and receive a PUMA T6 matrix is
0.014 sec_ch is equivalent to a rate of 71.4 Hertz.

The :ontrol CPU cycles at a rate of 25 Hertz in position mode and 27 Hertz

in rate r_le times of 0.04 seconds and 0.037 seconds respectively). This CPU had
a 6 megsSck rate.

Sum_ of these times in position mode, the minimum amount of time it takes

to send and from the FRHC, have the command transmitted to the robot, send

the robotl back to the local node and generate position error based force feedback

in the FR.0767 seconds, which is equivalent to a rate of 13 Hertz.

All ortware was coded in the high level programming language C, however, a

rather inecross compiler (National Semiconductor's GCS) was used.

8.0 CON(NS AND FUTURE WORK

This ,resents the current framework of our teleoperator system development.

Position _of a PUMA robot bypassing VAL and using a distributed computing
system al_tisfactory, albeit with some limitations:

1) SinceMA joint processors' PID control parameters are proprietary information

and ¢_e easily accessed and altered, the control flexibility is hence somewhat
handi

2) The Ioint rate information, which is crucial for bilateral servo control, is also
not a'

3) The Cland controller electronics do not provide velocity information, and the

velocilation by software is not very accurate.

A nevrsal Controller (UC) is under development to replace both of the hand

controller ,ics and the entire PUMA controller in the near future [1]. This UC shall

provide eass to the control parameters and easy adaptation of different control

18

methods. The limitations cited above that appeared in the current teleoperator setup

shall be alleviated when the UC is implemented.

The goal of our teleoperator development is to realize a higher throughput bilateral

servo control system. The following work is planned to reach this goal:

1) Direct current control, instead of position control, shall be implemented for force or

force/position control of the robot arm.

2) Robot dynamics, in addition to kinematics, shall be implemented.

3) Information from robot force torque sensors shall be included in the calculation of
hand controller force feedback.

4) To attempt an increase in system throughput, interrupt driving and synchronization

of the distributed processor shall be explored.

5) Obtain a more efficient cross compiler.

9.0 REFERENCES

[1] Bejczy, A.K. and Z. Szakaly, "Universal Computer Control System for

Space Telerobots," Proceedings of IEEE Conference on Robotics and

Automation, Raleigh, NC, March 1987.

[2] Paul, R.P., Robot Manipulators - Mathematics Programming and Control,

MIT Press, 1981.

[3] Denavit, J. and R.S. Hartenberg, "A Kinematic Notation for Lower Pair

Mechanisms Based on Matrices," Vol. 22, Transactions of the ASME,

19855, pp. 215-221.

[4] Fong, C.P., A.K. Bejczy, and R. Dotson, "Distributed Microcomputer Con-

trol System for Advanced Teleoperators," Proceedings of IEEE Inter-

national Conference on Robotics and Automation, San Francisco, CA,

April 7-10, 1986.

[5] Salganicoff, M., E. Austin, and C.P. Fong, "Real-time Simulation of a Dis-
tributed Teleoperator System," Proceedings of IASTED (International

Association for Science and Technology for Developement) Conference

on Applied Simulation and Modeling, Vancouver, BC, June 1986, pp.

594-598.

[6] Pressman, R.S. and J.E. Williams, Numerical Control and Computer Aided

Manufacturing, John Wiley and Sons, Inc., 1977.

19

_t

